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We use a thermodynamic assumption that the vertical heating profile
has the shape of the first baroclinic mode, and that the analytical expression
for vertical velocity has two modes, representing shallow and deep convection.
The thermal assumption of the model is given through the convective inhibi-
tion closure, i.e. negative convective inhibition results in increased precipita-
tion. These modeled modes are the free Kelvin waves and the convectively
coupled Kelvin waves. We find the latter mode to be unstable, with maximum
growth rate at wavelengths of 6 000 kilometers. The model successfully cap-
tures the observed nature of the Kelvin waves and shows that convective inhi-
bition closure is sufficient to trigger the observed destabilization of the con-
vectively coupled Kelvin mode.
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1. Introduction

Equatorial waves are disturbances that are trapped about the equator.
They can propagate eastward or westward and they decay as we move away
from the equator. The biggest disturbance among the equatorial waves is the
Madden-Julian oscillation (MJO). The MJO is a wave envelope of planetary
wavenumber l = 1, 2, 3 and a period of 30–60 days. It brings bad weather and
lots of precipitation. Another equatorially trapped wave is the Kelvin wave. Its
wavelength is smaller than the MJO’s, but it can also be unstable and thus
bring bad weather. The Rossby waves and inertia-gravity waves are also equa-
torially trapped waves, but will not be discussed in this work. Figure 1 shows
the space – time spectrum of outgoing longwave radiation (OLR) symmetric
about the equator, the equatorially trapped waves, their periods and zonal
wavenumbers.

Due to the specific characteristics of the tropical atmosphere, we need to
consider the influence of diabatic source terms on the dynamics of the waves.
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In this model we research the equatorial convectively coupled Kelvin waves.
The observations show (Straub and Kiladis, 2002) that the convectively cou-
pled Kelvin waves slow down compared to their free modes. The way that the
local convection interferes with the dynamics of the Kelvin wave is still not
well known.

Matsuno (1966) is the father of the analytical theory for the equatorially
trapped waves. In his work Matsuno assumes a shallow-water model where
Coriolis parameter linearly varies with the longitude: f = b ⋅y. When zonally
propagating waves are assumed as the solution, the result is a dispersion rela-
tion with several modes as a solution: inertia-gravity waves, Rossby wave and
Kelvin wave (when meridional velocity is zero). In the Kelvin wave solution
the phase speed of the wave is nondispersive and equal to (gh)1/2, i.e. it is equal
to the phase speed of shallow water gravity waves. Matsuno’s model does not
include thermal effects, i.e. it is an adiabatic model and thus the modeled
modes are free. Matsuno’s modes are shown in solid line in Figure 1.

As local convection in the tropics is not well understood, it is difficult to
model the unstable Kelvin waves coupled with convection. However, recent
work by Raymond and Fuchs, 2007 (RF2007) and Khouider and Majda, 2006
(KM2006) has shown that such modeling is possible.

The main difference between KM2006 and RF2007 is the assumed heating
profile. KM2006’s vertical heating profile is more complex as they assume two
different profiles; one corresponds to deep convection and the other to stra-
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Figure 1. Space-time spectrum of OLR symmetric about the equator and equatorial waves: Kel-
vin waves (Kelvin), Madden-Julian oscillation (MJO), Rossby waves (ER) and eastward (EIG) and
westward (WIG) inertio-gravity waves (Wheeler and Kiladis, 1999).



tiform convection. Therefore, this model has two equations for the vertical ve-
locity and consequently for all other fields. As a result the model can only be
solved numerically. KM2006’s Kelvin wave phase speed agrees with the obser-
vations.

Raymond and Fuchs solve their model analytically using a simple sinusoi-
dal heating profile with a wavelength equal to twice the depth of the tropo-
sphere. Despite this assumption, RF2007’s model obtains an analytical expres-
sion for the vertical velocity that has both types of the heating profiles. When
the model is solved with the expression for vertical velocity, the result is an
unstable convectively coupled Kelvin wave with a phase speed and instability
properties that agree with the observations. Though RF2007 agrees with the
observational data, it is still rather complex. The goal of this work is to create
a model that is simpler than RF2007, but that still produces modes which
agree with the observations.

The model in this paper is a simple non-rotating model of the tropical at-
mosphere. It is based on work by RF2007 as the assumed vertical heating pro-
file is of the shape of the first baroclinic mode and as the vertical velocity ex-
pression is taken from their work. The assumption of the non-rotating atmo-
sphere is justified as the Kelvin waves in a rotating atmosphere correspond to
gravity waves in non-rotating atmosphere. For that reason we call those waves
Kelvin waves.

In this paper we assume that the only condition for the strong precipita-
tion connected to the Kelvin waves is suppressed convective inhibition. It is an
idealization, but the purpose of this work is to reduce the pool of diabatic ef-
fects and get a clearer picture of which mechanism is responsible for the insta-
bility of the wave.

We find the model with the above hypothesis successfully generates a con-
vectively coupled Kelvin wave with the same phase speed and instability as the
observed one. This points to suppressed convective inhibition as the primary
mechanism responsible for the convectively coupled Kelvin waves in the trop-
ics.

Section two shows the basic theory behind the model, section 3 gives the
results, while conclusions are given in section 4.

2. Model

2.1. Basic equations

We begin the derivation of Kelvin waves with the basic governing equations:
Momentum equation:
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Continuity equation:
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Thermodynamic equations:
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where q is the potential temperature, qe is the equivalent potential tempera-
ture and q is the mixing ratio. As we are considering the diabatic case, the
right side of the thermodynamic equations is not zero. We further neglect the
processes that are not directly responsible for the Kelvin waves:

1. We assume a non-rotating atmosphere, i.e. 2 0
� �

W × =V . The Kelvin wa-
ves in rotating atmosphere map into gravity waves in non-rotating at-
mosphere which justifies this assumption and is a reason why we call
them Kelvin waves.

2. We neglect the friction: F = 0.

3. We assume the fluid is incompressible (
d
d

r

t
= 0), which according to

equation (2) implies that ∇ ⋅ =
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V 0.

4. We assume the fluid is in hydrostatic equilibrium,
d
d
w
t
= 0. In the verti-

cal momentum equation the gravitational term is assumed to be bal-
anced by the pressure gradient.

5. We consider the (x, z) plane only.

After the above approximations we are left with:
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The equations (6) and (7) are the x and z components of the momentum
equation. Equation (8) follows from the continuity equation. Equations (9),
(10) and (11) come from the thermodynamic equations.

From the Poisson equation q =
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is the Exner function.

Equations (6) and (7) can now be rewritten as:

∂
∂

∂
∂

∂
∂

∂
∂

u u u
t

u
x

w
z x

+ + + =q
P
~

0 (13)

q
P
~

∂
∂z

g+ = 0 (14)

2.2. Linearization

We linearize the model using the perturbation method and expressing
every variable as a superposition of the equilibrium state and its perturba-
tion. The basic state of every variable satisfies the governing system of equa-
tions, and the perturbation values are small enough for their multiplication
to be neglected.
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We start with:
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We next assume that the mean horizontal and vertical velocities are zero,
and therefore:
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After linearization the system of equations (6)–(11) simplifies to:

∂
∂

∂
∂

u
t x
+ =q

P
~

0 0 (18)

q
P q

q

~

0
0

∂
∂z

g= (19)

∂
∂

∂
∂

u
x

w
z

+ = 0 (20)

∂
∂
q q

t
w S+ =

d

d
0

z
(21)

∂
∂
q qe e

zt
w Se+ =

d

d
0 (22)

∂
∂
q

w
q

z
Sqt

+ =
d

d
0 (23)

where for simplicity we write u’� u, w’� w, etc.
We recognize the term in equation (19) as buoyancy:
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q
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We further introduce S SB =
g

q0
and to simplify the notation we redefine

the Exner function as P q P
~

= 0 . The system of equations (18)–(23) can now be
written as:
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We use this system of equations to derive the convectively coupled Kelvin
waves in moist atmosphere.

2.3. Thermodynamics of moist atmosphere

In the tropical atmosphere precipitation is an important heating source as
the latent heat is released by condensation of water vapor. Another heating
mechanism is latent or sensible heat transport from the surface by evapora-
tion or induced by wind (wind induced surface heat exchange).

The heat source comes into the equations through the source terms. As we
consider a non adiabatic case the heat is exchanged with the environment. We
integrate the buoyancy source term SB through the entire troposphere:

B S dzB
h

= ∫0 (30)

Fuchs and Raymond (2007) assumed a simple sinusoidal heating profile
(the first baroclinic mode), with the heating maximum in the middle, and fall-
ing to zero at the bottom (surface) and the top of the troposphere:
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m0 = p/h is the vertical wavenumber where half of its wavelengths is equal to the depth

of the troposphere. Troposphere depth is taken as h = 15 000 m. This type of
heating profile corresponds to deep convection and we will use it in this paper.

Convective inhibition energy (CIN) is the amount of energy that will pre-
vent an air parcel from rising from the surface to the level of free convection,
zLFC:

CIN g
T T

T

V V

Vz

z
parcel environment

environment

=
−













LFC

z∫ d (32)

Convective inhibition disables the updrafts, thus preventing the develop-
ment of convective clouds and precipitation. Convective inhibition is a conse-
quence of stable stratification. In that situation the parcels that are being
lifted come to the environment that is warmer than themselves and thus the
convection ceases. In-situ measurements (Raymond et al., 2003) show that a
stable layer just above the boundary layer is sufficient to inhibit the develop-
ment of deep convection and the associated cloudiness. This disables the preci-
pitation from convective clouds. Convective inhibition is parameterized
through the buoyancy perturbation.

The crucial hypothesis of this model is that the precipitation is controlled
by changes in convective inhibition. The modulation of convection can be ex-
plained by wave-related adiabatic lifting of the capping layer just above the
boundary layer.

Convective inhibition is parameterized through the precipitation term (P).
Raymond and Fuchs (2007) analyzed the data collected by the ship Ron
Brown, and particularly the situations when the precipitation was connected
to small or negative values of convective inhibition. They suggested the follow-
ing parameterization:

P b DCIN t=−m l ( ) (33)

D is the dimensionless height of the stable layer, normalized by the depth
of the troposphere h. mCIN is a parameter that defines sensitivity of the precipi-
tation to convective inhibition (see Raymond and Fuchs, 2007 for more de-

tails), while lt is defined as: lt
p p

L
c T
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1
∂
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rs . L is the specific latent heat, cp

is the specific heat capacity at constant pressure and rs is the saturation mix-
ing ratio at level D⋅h. In tropical atmosphere lt » 3.5 at level D⋅h.

To be able to isolate the most important mechanism for the convectively
coupled Kelvin waves we neglect all other effects and thus assume that total
heating is caused by latent heat release from precipitation. Compared to
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RF2007 this simplifies the parameterization of precipitation, as it is only done
by changes in CIN:

B S z dz P b DB CIN t
h

= = =−∫ ( ) ( )m l
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(34)

To solve (25)–(29), we assume the following form of the variables:

u(x, z, t) = u(z)exp[i(kx–wt)] (35)

w(x, z, t) = w(z)exp[i(kx–wt)] (36)

P(x, z, t) = P(z)exp[i(kx–wt)] (37)

b(x, z, t) = b(z)exp[i(kx–wt)] (38)

q(x, z, t) = q(z)exp[i(kx–wt)] (39)

thus obtaining the polarization relations:
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Vertical velocity perturbation is taken from RF2007 where the model was
solved on the x–z plane:
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F is a nondimensional phase speed: F
w

ak
= =

m

m
0 . k is a nondimensional horizon-

tal wavenumber: k
G

a
=

h B
1/ 2

p
k. a is a moisture relaxation rate (Fuchs and Ray-

mond, 2001) in units of day–1. m0 is the vertical wavenumber of the first
baroclinic mode while m is the vertical wavenumber of the calculated mode.
Vertical velocity is a result of updrafts due to deep and stratiform convection
and thus both components appear in the vertical velocity expression. The
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sin(m0 z) term corresponds to the deep convection, while the exp(–ip/F) sin(mz)
term corresponds to stratiform convection.

Given we already know the vertical velocity profile w, and the vertical
heating source profile SB, it is straightforward to obtain the dispersion rela-
tion. From equations (38), (31) and (44) we get the buoyancy perturbation as a
function of height:
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Using equations (44), (45), (31) and (28) we find the dispersion relation to
be:
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Parameter ct defines the sensibility to stable layers. It is taken to be equal
to 12, as in the control case from RF2007 who based it on the extended ther-
modynamic parameter analysis. Nondimensional height D is the ratio of the
height of the stable layer and the height of the troposphere h. As the stable
layer is usually at z = 2 km, the parameter D is 0.17.

The dispersion relation is solved numerically using the Newton’s method
in Mathematica.

3. Results and discussion

Dispersion relation (46) is solved numerically for F with D = 0.17 and ct = 12
(Raymond and Fuchs, 2007). F = w/ak is a complex number whose real part is
non-dimensional phase speed. If positive, the wave propagates eastward; if
negative, it propagates westward. By multiplying F by wavenumber k, we get
W º F⋅k = w/a, where w is the wave frequency in units of day–1. Imaginary part
of the wave frequency is growth or decay rate of the mode as all the fields have
wave dependence in time that is proportional to exp(–iw t). If the imaginary
part is positive, the result is exponentially growing mode, while if it is nega-
tive, the result is decaying mode.

To better visualize the results we define the planetary wavenumber l=k/k1,
where k1 = 2p /40 000 km–1. It is equal to 1 for waves with wavelength equal to
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circumference of the earth. Figures 2–7 show the phase speed and growth rate
as a function of l for all the obtained modes – the free Kelvin waves and the
convectively coupled Kelvin waves.

Figures 2 and 3 show the free Kelvin waves that propagate eastward and
westward with a phase speed of ±48 m⋅s–1. Figure 4 shows the growth rate of
the free Kelvin wave. Imaginary part of the frequency is zero which means
that they are neither growing nor decaying, they are neutral.

Figure 5 shows the convectively coupled Kelvin wave that propagates east-
ward and Figure 7 the one that propagates westward. The phase speeds are
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Table 1. Parameters and their values.

Symbol Parameter Value/dimension

u Horizontal speed [m ⋅ s–1]

P
~

Exner function [m2 ⋅ s–2 ⋅K–1]

P Exner function ⋅ mean potential temperature [m2 ⋅ s–2]

w Vertical speed [m ⋅ s–1]

B Buoyancy [m ⋅ s–2]

Q Scaled mixing ratio [m ⋅ s–2]

G
q

q
B

g
z

=
0

d
d Squared Brunt-Väisälä frequency [s–2]

G Gravitational acceleration [m ⋅ s–2]

cp Specific heat capacity at constant pressure 1 005 J kg–1 K–1

m k B= G w1 2/ / Vertical wavenumber [m–1]

m0 = p/h First baroclinic vertical wavenumber 2.09´10–4 m–1

h Depth of the troposphere 15 km

k Horizontal wavenumber [m–1]

w Frequency [s–1]

F Nondimensional phase speed Calculated

W = w/a Nondimensional frequency Calculated

k G w= k mB
1 2/ / Nondimensional horizontal wavenumber 0.7 to 20

l = 2p/40 000 Planetary zonal wavenumber [km–1]

a Moisture relaxation rate [day–1]

ct Constant 12

lt Constant 3.5

D = z⋅h Nondimensional height of the stable layer 0.17

L Specific latent heat [J ⋅ kg–1]
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Figure 2. Phase speed of the free Kelvin waves as a function of planetary wavenumber. The prop-
agation is eastward.

Figure 3. The same as figure 2, but the propagation is westward.

Figure 4. Growth rate for the free Kelvin waves as a function of planetary wavenumber.



±18 m⋅s–1 and vary slightly with the wavenumber. The westward propagating
convectively coupled Kelvin wave does not have its analog in reality so we ne-
glect it. The imaginary part of the frequency is positive (Figure 6) for most
wavelengths which means that the wave is unstable or growing in time.

The modeled phase speed of the convectively coupled Kelvin wave (16–19 m⋅s–1)
is in good agreement with observations (Straub & Kiladis, 2002). The imagi-
nary part of the frequency reaches its maximum for planetary wavenumber
l = 7. This indicates that the convectively coupled Kelvin waves show the big-
gest growth rate for the wavelengths around 6 000 km. This result is in good
agreement with observations as the highest spectral energy for this mode was
found around that wavelength (Wheeler and Kiladis, 1999). The growth rate
decreases as we go towards higher wavenumbers; after l = 15 the modes
decay.
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Figure 5. Phase speed of the eastward convectively coupled Kelvin wave as a function of plane-
tary wavenumber.

Figure 6. Growth rate of the eastward and westward propagating convectively coupled Kelvin
waves as a function of planetary wavenumber.



4. Conclusions

We present an idealized, vertically resolved model of the tropical atmo-
sphere. We assume that the heating profile is sinusoidal with half of the wave-
length equal to the depth of the troposphere (the first baroclinic mode). The
vertical velocity profile is bimodal and taken from Raymond and Fuchs (2007).

Heat release through precipitation is the only diabatic mechanism of im-
porting heat in the system. Precipitation rate is parameterized by variations
in convective inhibition (CIN), motivated by wave-related adiabatic lifting of
the capping layer just above the boundary layer. The reason for such a simpli-
fied treatment is our intent to investigate the feasibility of CIN variations as
the basic mechanism for generating convectively coupled Kelvin waves.

Two modes are modeled: the free Kelvin waves and the convectively cou-
pled Kelvin waves. We find that the free Kelvin waves have a phase speed of
approximately 48 m⋅s–1, close to that seen in observations (Andrews et al.,
1987). They propagate eastward and westward, and are found to be neutral.
The modeled free Kelvin waves follow the theory of free gravity waves. We
find convectively coupled Kelvin wave that propagates with a phase speed of
16–19 m⋅s–1, varying only slightly with wavelength. It is unstable with the biggest
growth rate for planetary wavenumber l = 7, corresponding to l = 6 000 km.
Phase speed and growth rate agree with the observations (Wheeler and Kiladis,
1999; Straub and Kiladis, 2002). The phase speed is likely to be a consequence
of vertical velocity profile, i.e. of the wave dynamics while the instability is a
result of the CIN modulation.

The presented model is an idealized analytical model for the Kelvin waves.
Our results follow from only two assumptions: i) the first baroclinic mode
heating profile (leading to bimodal vertical velocity profile; RF2007), and ii)
the parameterization of precipitation by variations of CIN. More complex
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Figure 7. Phase speed of the westward convectively coupled Kelvin waves as a function of plane-
tary wavenumber.



models such as Raymond and Fuchs (2007) also include cloud-radiation inter-
actions, precipitation dependence on humidity and wind induced surface heat
exchange (WISHE). The dynamics in this model is the same as in RF2007, and
the agreement between our results and RF2007 is very strong especially when
compared to their case without WISHE. This shows that the basic mechanism
for the instability of the convectively coupled Kelvin wave is the variation in
convective inhibition.
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Konvektivno udru`eni Kelvinovi valovi i konvektivna inhibicija

Dea Doklesti}, @eljka Fuchs i Antun Marki

Termodinami~ke pretpostavke modela uklju~uju vertikalni profil grijanja koji ima
oblik prvog baroklinog moda. Pretpostavljeni oblik vertikalne brzine sastoji se od dva
dijela koji odgovaraju plitkoj i dubokoj konvekciji. Za parametrizaciju oborine uzeta je
negativna konvektivna inhibicija (CIN).
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Dobiveni modovi su slobodni Kelvinovi valovi i Kelvinov val povezan s konvek-
cijom. Kelvinov val povezan s konvekcijom je nestabilan, a najve}u nestabilnost po-
kazuje pri valnoj duljini od 6 000 km. Ovim modelom uspje{no je reproducirana opa`ena
priroda Kelvinovih valova, a iz modela se vidi da je konvektivna inhibicija dovoljna za
modeliranje opa`ene nestabilnosti Kelvinovih valova povezanih s konvekcijom.

Klju~ne rije~i: Modeli velikih razmjera, tropi, destabilizacija
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